Uniform boundedness of Kantorovich operators in variable exponent Lebesgue spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent

The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...

متن کامل

On Boundedness of a Certain Class of Hardy–steklov Type Operators in Lebesgue Spaces

Lp−Lq–boundedness of the map f → w(x) ∫ b(x) a(x) k(x, y)f(y)v(y)dy is described by different types of criteria expressed in terms of given parameters 0 < p, q < ∞, strictly increasing boundaries a(x) and b(x), locally integrable weight functions v, w and a positive continuous kernel k(x, y) satisfying some growth conditions.

متن کامل

On the boundedness of bilinear operators on products of Besov and Lebesgue spaces

We prove mapping properties of the form T : Ḃ11 p1 × L p2 → Ḃ22 p3 and T : Ḃ11 p1 × Ḃ α2,q2 p2 → L p3 , for certain related indices p1, p2, p3, q1, q2, α1, α2 ∈ R, where T is a bilinear Hörmander-Mihlin multiplier or a molecular paraproduct. Applications to bilinear Littlewood-Paley theory are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2019

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1918755a